Effect of large pore size of multifunctional mesoporous microsphere on removal of heavy metal ions.

نویسندگان

  • Qing Yuan
  • Nan Li
  • Yue Chi
  • Wangchang Geng
  • Wenfu Yan
  • Ying Zhao
  • Xiaotian Li
  • Bin Dong
چکیده

Pore size of mesoporous materials is crucial for their surface grafting. This article develops a novel multifunctional microsphere with a large pore size mesoporous silica shell (ca. 10.3 nm) and a magnetic core (Fe₃O₄), which is fabricated using cetyltrimethylammonium bromide (CTAB) as pore-forming agents, tetraethyl orthosilicate (TEOS) as silicon source through a sol-gel process. Compared with small pore size mesoporous silica magnetic microspheres (ca. 2-4 nm), the large pore size one can graft 447 mg/g amino groups in order to adsorb more heavy metal ions (Pb(2+): 880.6 mg/g, Cu(2+): 628.3mg/g, Cd(2+): 492.4 mg/g). The metal-loaded multifunctional microspheres could be easily removed from aqueous solution by magnetic separation and regenerated easily by acid treatment. The results suggest that the large pore size multifunctional microspheres are potentially useful materials for high effectively adsorbing and removing different heavy metal ions in aqueous solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Hydrothermal and Non-Hydrothermal TiO2 Nanoporous Materials as New Adsorbents for Removal of Heavy Metal Ions from Aqueous System

Hydrothermal and non-hydrothermal spherical TiO2 nanoporous with crystalline framework were prepared by sol-gel method. The Crystalline structures, morphologies and surface texturing of materials were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and N2 adsorption-desorption isotherms. The Hydrothermal spherical TiO2 nanoporous was found to have a narrow and strong p...

متن کامل

Synthesis of Ethylenediamine-modified Ordered Mesoporous Carbon as a New Nanoporous Adsorbent for Removal of Cu(II) and Pb(II) Ions from Aqueous Media

The mesoporous carbon (CMK-3) functionalized with ethylenediamine (EDA) has been synthesized (CMK-3-EDA) and applied as a new mesoporous adsorbent for removal of Cu(II) and Pb(II) cations from aqueous solutions. Nitrogen adsorption–desorption measurements (BET) show that surface area, pore size and pore volume of CMK-3 were significantly changed after amine modification. The BET surface area an...

متن کامل

Fabrication and characterization of polycarbonate/titanium oxide nanotubes mixed matrix membranes for efficient removal of cadmium and copper from aqueous solution

In this study, novel polycarbonate-titanium oxide nanotubes (PC-TNT) ultrafiltration mixed matrix membranes (MMMs) were fabricated for decontamination of Cd2+ and Cu2+ metal ions from aqueous solution. The weight percent of TNTs in the polycarbonate membrane matrix was changed from 0 to 15. The synthesized neat PC membrane and PC-TNTs MMMs were characterized with respect to structural morpholog...

متن کامل

Removal of Heavy Metal Particles by LTJ, ANA, SVR, BEC and MER zeolites particles: A Molecular Dynamics Simulation Study

In present study, molecular dynamics simulation of Cadmium (II), Lead (II) and Copper (II) removal from aqueous electrolyte solutions using the ion-exchange process with the zeolite particles was done. The results showed that, most of the particles had the highest affinity of ion exchanging with Lead (II) and the lowest affinity with Copper (II). The calculated mean ion-exchange ratios showed t...

متن کامل

Synthesis and Characterization of Functionalized SBA-15 Mesoporous Silica by N, N´-Bis(salicylidene)ethylenediamine Schiff-Base

In this work, BSEA-SBA-15 was prepared for the first time, which was prepared by covalently anchoring Schiff-base compound (N,N´-bis(salicylidene)ethylenediamine (BSEA) on SBA-15 by hydrothermal method. The structure and physicochemical properties were determined by elemental analysis, XRD, nitrogen adsorption–desorption, thermogravimetric analysis and FTIR spectroscopy, SEM, BET surface area a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of hazardous materials

دوره 254-255  شماره 

صفحات  -

تاریخ انتشار 2013